Nitsche-XFEM with Streamline Diffusion Stabilization for a Two-Phase Mass Transport Problem
نویسندگان
چکیده
منابع مشابه
Nitsche-XFEM with Streamline Diffusion Stabilization for a Two-Phase Mass Transport Problem
We consider an unsteady convection diffusion equation which models the transport of a dissolved species in two-phase incompressible flow problems. The so-called Henry interface condition leads to a jump condition for the concentration at the interface between the two phases. In [A. Hansbo, P. Hansbo, Comput. Methods Appl. Mech. Engrg. 191 (20002)], for the purely elliptic stationary case, exten...
متن کاملAnalysis of a Nitsche XFEM-DG Discretization for a Class of Two-Phase Mass Transport Problems
We consider a standard model for mass transport across an evolving interface. The solution has to satisfy a jump condition across an evolving interface. We present and analyze a finite element discretization method for this mass transport problem. This method is based on a space-time approach in which a discontinuous Galerkin (DG) technique is combined with an extended finite element method (XF...
متن کاملAnalysis of a DG–XFEM Discretization for a Class of Two–Phase Mass Transport Problems
We consider a standard model for mass transport across an evolving interface. The solution has to satisfy a jump condition across an evolving interface. We present and analyze a finite element discretization method for this mass transport problem. This method is based on a space-time approach in which a discontinuous Galerkin (DG) technique is combined with an extended finite element method (XF...
متن کاملOptimal preconditioners for Nitsche-XFEM discretizations of interface problems
In the past decade, a combination of unfitted finite elements (or XFEM) with the Nitsche method has become a popular discretization method for elliptic interface problems. This development started with the introduction and analysis of this Nitsche-XFEM technique in the paper [A. Hansbo, P. Hansbo, Comput. Methods Appl. Mech. Engrg. 191 (2002)]. In general, the resulting linear systems have very...
متن کاملNewton-Product integration for a Two-phase Stefan problem with Kinetics
We reduce the two phase Stefan problem with kinetic to a system of nonlinear Volterra integral equations of second kind and apply Newton's method to linearize it. We found product integration solution of the linear form. Sufficient conditions for convergence of the numerical method are given and their applicability is illustrated with an example.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2012
ISSN: 1064-8275,1095-7197
DOI: 10.1137/110855235